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Abstract10

An important emerging issue in climate research is the degree to which a Sea Surface 11

Temperature (SST) change in one tropical ocean basin affects the SST in other basins. In this 12

study the SST interactions among 8 broadly defined regions of coherent SST variability in the 13

tropical Pacific, Indian, and Atlantic oceans are estimated using 3 observational and 76 climate 14

model simulation datasets of the 20
th

 century. The 8-dimensional SST feedback matrix is 15

estimated separately using each dataset by constructing a Linear Inverse Model based on the lag-16

covariance statistics of the 100-yr monthly SST time series. The simulated feedback matrices are 17

found to differ in several key respects from the observed matrices, and also from one another. In 18

particular, the influence of the eastern Pacific ENSO region on other regions, and of the other 19

regions on the ENSO region, are found to vary considerably from model to model. The 20

representation of remote interactions with the Indo-Pacific Warm Pool region is also found to be 21

highly variable. It is argued that these large errors/differences arise mainly from differences in 22
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the representation of the remote atmospheric teleconnective feedbacks, and to a lesser extent the 23

local radiative-thermodynamic feedbacks, on the SSTs in the models, whereas differences in the 24

representation of the tropical oceanic wave dynamics are likely less important.25

26

27

1. Background28

Most climate models remain deficient at representing important atmospheric and oceanic aspects 29

of the tropical climate. For example, the simulated atmospheric intertropical convergence zone 30

(ITCZ) varies considerably from model to model, with many models generating an unrealistic31

“double ITCZ” structure, and in many oceanic simulations a 1-2 K mean SST bias is found over 32

large areas [e.g. Lin 2007]. The ultimate origin of such biases remains a mystery. At least in part, 33

this is because it is still unclear how a change and/or error in one part of the system causes a 34

change and/or error in another part, and what overall effect this has on the simulation and 35

prediction of tropical climate variations.36

37

In this study, we attempt to address the first part of this question. We are especially interested in 38

how the SST variations in the Indian, Pacific, and Atlantic Ocean basins are interlinked. 39

Although these basins are separated from each other by the American and African land masses 40

and the Maritime Continent, their interactions with each other, which occur predominantly 41

through the atmosphere on time scales of a few months, can nevertheless be substantial. For 42

example, it is well recognized that El Niño related SST variations in the eastern equatorial 43

Pacific influence climate variability over the adjacent oceans [e.g. Enfield and Mayer 1997; 44

Penland and Matrosova 1998; Klein et al. 1999; Alexander et al. 2002; Giannini et al. 2004]. 45
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Conversely, the relatively weak SST variability in the Indian and Atlantic basins also modifies 46

ENSO variability in the Pacific basin [Yu et al. 2002; Annamalai et al. 2005; Kug and Kang 47

2006; Kug et al. 2006; Dommenget et al. 2006; Yeh et al. 2007]. The question naturally arises, 48

how accurately do current coupled climate models capture such interactions among these ocean 49

basins?50

51

We are also interested here in the dominant interactions within each of these basins, especially 52

between the eastern and western and off-equatorial and equatorial Pacific, between the northern 53

and southern tropical Atlantic, and between the western and eastern Indian oceans. We suspect --54

and confirm below -- that these interactions are also not well represented in climate models, 55

partly because (with the possible exception of east-west interactions in the equatorial Pacific) 56

they are not dominated by well-understood oceanic wave dynamics. Even within the equatorial 57

Pacific zone, there are questions concerning how well climate models capture the east-west SST 58

interactions associated with fluctuations of the atmospheric Walker circulation, which are an 59

integral part of the ENSO phenomenon.60

61

Guided by EOF analyses of observed monthly SST variations in each basin, we selected a total 62

of 8 geographically localized regions in the tropics (30°S-30°N) among which to investigate the 63

SST interactions (see Fig. 1). We focused on the effectively linear feedbacks among these 64

regions, encapsulated in an 8�8 deterministic system feedback matrix L , by constructing and 65

intercomparing the L  matrices obtained from Linear Inverse Modeling [LIM; see e.g. Penland 66

and Sardeshmukh 1995, Newman et al. 2009] of both observed and simulated monthly tropical 67

SST variations over the 20
th

 century (1900-1999). We constructed three observationally based L68
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matrices using SST datasets compiled at the Hadley Centre of the UK Met Office [HadISST; 69

Rayner et al. 2003], the Lamont-Doherty Earth Observatory [Kaplan et al. 1998], and the 70

National Oceanic and Atmospheric Administration [NOAA, Smith and Raynolds 2005]. We then 71

compared these matrices with 76 L  matrices derived from 76 coupled model simulations of the 72

20th century, available at the Program for Climate Model Diagnosis and Intercomparison 73

(PCMDI; http://www-pcmdi.llnl.org). These simulations were generated using prescribed 74

observed time-varying radiative forcings associated with greenhouse gases, aerosols, and solar 75

variations as part of the Climate of the Twentieth Century project (20C3M), as a contribution to 76

the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change [IPCC 77

2007].78

79

2. Diagnosis method80

Our multivariate diagnosis of tropical SST interactions rests on approximating the evolution of 81

tropical variations on longer than weekly time scales by a linear stochastically forced model of 82

the form,83

                                  
dx

dt
= Lx +B� + F , (1)84

where x t( )  is the N-component system state vector with N=8 components representing the 85

spatially averaged monthly-mean SST anomalies in our 8 regions, all predictable dynamical 86

interactions among the system components are represented in the N�N deterministic linear 87

feedback matrix L  (sometimes also called the system sensitivity matrix or the matrix of time 88

scales), and all unpredictable chaotic nonlinear dynamics are approximated by the stochastic 89

forcing B� , where �  is an M-component noise vector of independent white noises and B  is a 90
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constant N�M matrix. Note that the expected mean <B� > of this stochastic forcing is zero. The 91

N-component vector F  represents external radiative forcing of the system.92

93

It is important to recognize that although (1) is formulated using only SST, it implicitly includes 94

influences of other climate variables such as winds and ocean currents on SST, and also 95

nonlinear effects, in approximate form. Specifically, deterministic interactions with other 96

variables are implicitly included in L  to the extent that those variables can be linearly diagnosed 97

from the monthly SST anomaly state vector. As for nonlinear effects, the basic premise in (1) 98

concerning the evolution of monthly SST anomalies is that the nonlinear SST tendency terms 99

associated with submonthly SST anomalies and fluxes are in principle linearly parameterizable 100

in terms of the monthly SSTs, and the unparameterized remainder can be treated as stochastic 101

white noise. With these approximations in mind, it is apparent that L  in (1) is not that obtained 102

by directly linearizing the governing fluid dynamical equations but also includes such linear 103

interactions with other variables and linear parameterizations of unresolved processes, and B104

accounts for the amplitude and spatial correlation structure of the unparameterized remainder as 105

a “stochastic parameterization”. We interpret L  as an effectively linear feedback matrix106

governing monthly SST variations in the tropics. Each of its elements L
ij

 quantifies the direct107

dynamical influence (in a dynamical systems sense) of the SST x
j
 in region j on the SST x

i
 in 108

region i, as distinct from additional indirect influences of region j on region i via other regions k.109

Note that in general L
ij
� L

ji
.  Note also that because the system is multivariate, the L

ij
 are not 110

simply identical to the regression coefficients of x
i
 on x

j
.111

112
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The approximation (1) may be justified using several lines of evidence. First, many coupled 113

climate models are found to respond approximately linearly to imposed GHG and other external 114

radiative forcing changes on decadal and longer timescales [e.g., Meehl et al. 2004; Cash et al. 115

2005; Knutson et al. 2006 and references therein], consistent with a linear ensemble-mean 116

response x = �L�1
F  that one would predict using (1). Second, on shorter interannual scales on 117

which the changes of F  are relatively small, the SST dynamics are consistent with those of a 118

stochastically forced linear system both in the tropics [Penland and Sardeshmukh 1995, Newman 119

et al. 2009] and the extratropics [Hasselmann 1976; Frankignoul 1985; Barsugli and Battisti 120

1998, Alexander et al. 2008]. Several studies have also shown that the predictable global121

atmospheric dynamics on these time scales are dominated by linear global responses to tropical 122

SST variations [e.g. Barsugli and Sardeshmukh 2002; Schneider et al. 2003; Barsugli et al. 123

2006]. Indeed, on these time scales it is difficult to improve upon predictions based on empirical 124

linear correlations, using even state-of-the-art nonlinear dynamically coupled models [e.g. Saha 125

et al. 2006]. The forecast skill of the correlation based models remains competitive with that of 126

comprehensive NWP models even on subseasonal time scales [Winkler et al. 2001; Newman et 127

al. 2003]. We provide further evidence below that (1) is a good enough approximation for the 128

evolution of monthly SST anomalies that L  provides useful information on both local and 129

remote SST feedbacks in the tropics.130

131

We used the LIM formalism of Penland and Sardeshmukh [1995, hereafter PS95] to estimate L132

from 3 observational and 76 coupled climate model simulation datasets of the 20
th

 century. The133

details of LIM may be found in PS95 and are not repeated here. Briefly, L  can be estimated 134

using the lag-covariance equation C �( )  = exp L�( ) C 0( )  satisfied by all dynamical systems of 135
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the form (1) with F = 0 , where C
ij
�( ) = x

i
t + �( ) x

j
t( )  are the elements of the lag covariance 136

matrix C �( )  at time lag � , by specifying C 0( )  and C �
0( )  at some lag �

0
. One can repeat this 137

exercise using other training lags �
0
; if the system is indeed of the form (1), then one should 138

obtain the same L . This is the so-called "Tau test" of PS95 for the validity of linear 139

stochastically forced dynamics. Note that even though L  is estimated using covariances at 140

relatively short lags �
0
 (several months in our case) over which the changes of F  are presumed 141

to be negligible, this same L  can then be used to determine the system's response as x = �L�1
F142

to F  on long time scales. 143

144

Our use of LIM here is distinct from that in previous LIM studies [e.g., PS95; Penland and 145

Matrosova 1998; Winkler et al. 2001; Newman et al. 2003; Penland and Matrosova 2006, 146

Alexander et al. 2008, Newman et al. 2009], in which the emphasis was mainly on prediction and 147

predictability, and L  was estimated using observations projected onto a truncated EOF space. 148

Here, our emphasis is on intercomparing L  matrices estimated from observations and coupled 149

climate model simulations, and in grid space, to isolate inadequately modeled interactions 150

among specific geographical regions. Such a diagnosis is harder to interpret when performed in a 151

truncated EOF basis, mainly because the dominant EOFs of detrended tropical climate variations 152

are not geographically localized structures and account for different fractions of the SST 153

variance at different locations. Note that we retain all of the variance of the detrended area-154

averaged monthly SST anomalies in each of our 8 localized regions. The SST anomalies in those 155

regions, obtained after removing the grand mean, mean annual cycle, and linear trend from the 156

100-yr monthly SST time series, define our 8-component state vector x t( )  in (1). 157
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158

Despite the seemingly drastic approximations made in (1), estimates of L  from both the 159

observational and simulation SST datasets pass the "Tau test" remarkably well, as shown in Fig. 160

2. To generate the figure, we estimated L  from each dataset using training lags �
0
 ranging from 161

1 to at least 5 months. (As explained in PS95, a technical difficulty with LIM is that it fails to 162

estimate L , even if (1) is valid, if �
0
 exceeds the half-period corresponding to the highest 163

eigenfrequency of L , i.e. beyond the Nyquist lag). The near-independence of L  on �
0
 may be 164

gauged in Fig. 2 by the nearly constant magnitude of L  times a “representative” constant vector 165

�  (whose 8 components are proportional to the SST standard deviations in the 8 regions) as �
0

166

is varied. The thick black and thin gray curves show the results for L�  obtained using the 167

observational and simulation datasets, respectively. It is reassuring that both sets of curves are 168

approximately flat, especially for �
0
 between 1 and 5 months, attesting to the validity of (1). 169

However, the model curves are vertically offset with respect to not only the observational but 170

also other model curves, and also generally terminate at different values of �
0
. These results 171

suggest that the SST feedbacks are indeed effectively linear in both the observations and the 172

models, but the simulated L  matrices differ substantially from the observational matrices and 173

also from one another. We explore these errors and differences in greater detail below.174

175

3. Observed and simulated feedback matrices176

Equation (1) may be cast in a standardized form by normalizing each component of x  by its 177

standard deviation. The L  matrix then transforms into L
�
= sLs�1 , where s  is a diagonal matrix 178

of the reciprocals of the SST standard deviations. Note that each element L
�

ij  of L
�

 has units of 179
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inverse time (month
-1

 in our case), and thus identifies a characteristic time scale for the influence 180

of an SST anomaly in region j on the anomaly in region i.181

182

Figure 3 provides a detailed intercomparison of the observed and simulated L
�

 matrices. At each 183

(i,j) location on the plot, the gray horizontal line segments show estimates of L
�

ij from the 76 184

individual model simulations. The mean value and range of the corresponding 3 observational 185

L
�

ij  estimates are indicated by the position and width of the red rectangle below the horizontal 186

axis. The multi-model ensemble mean of L
�

ij  is also shown below the horizontal axis as a filled 187

blue circle, together with two different measures of simulated uncertainty: the multi-model 188

ensemble spread of L
�

ij  ( ± �
ALL

; outer blue bars), and the average of the “internal” ensemble 189

spread obtained for specific models with at least 3 ensemble members
1
 (± �

INT
; shorter inner 190

blue bars). In essence, �
INT

 is a measure of the consistency of L
�

ij  estimated using different 191

simulations of the same model. The fact that �
INT

 is generally much smaller than �
ALL

 in Fig. 3 192

suggests that most of the multi-model spread of the L
�

ij  estimates arises from actual model 193

differences, rather than sampling error.194

195

Figure 3 shows that to a first approximation, monthly SST anomalies throughout the tropics are 196

strongly damped by local interactions within the air-sea column, as indicated by the 197

predominantly negative values of the diagonal elements L
�

ii  of L
�

 in both observations and 198

1
 In clustering the coupled models, different versions of a model (including different resolution versions) from the 

same modeling group were treated separately. We determined a total of 14 such distinct model clusters. They are 

indicated by the right-handed brackets at the far right edge of the plot.
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models. (Note that the scale for the diagonal elements in the figure is twice that for the off-199

diagonal elements).  This local damping time scale is relatively short (~ 4 months) in the Indian 200

and Western Pacific (Regions 1-3), somewhat longer (~ 6 months) in the Atlantic  (Regions 7-8), 201

and relatively long (6 to 9 months) in the eastern Pacific (Regions 4-6) basins.  It is longest in the 202

Cold Tongue "ENSO" region of the eastern equatorial Pacific (Region 5). The multi-model 203

ensemble mean values of L
�

ii  are generally in reasonable agreement with the observed values, 204

although there is considerable inter-model spread that is largest (relative to the ensemble-mean 205

value) in the ENSO Region 5. The positive bias of the models' L
�

55  with respect to the observed  206

(indicative of weaker than observed local damping) is also relatively the largest. A similar weak 207

local damping bias was implicated by Sun et al. (2006) in the excessive coldness of the long-208

term mean SSTs in this region in a smaller group of coupled model simulations. Apparently the 209

spuriously weak damping of SSTs in the ENSO region remains a prevalent problem.210

211

Given the importance of ENSO, the remote influence on the ENSO region from other regions 212

( L
�

5 j ), as well as the influence of the ENSO region on the other regions ( L
�

i5 ) are of particular 213

interest. These interactions are highlighted by the green and yellow colored 5th row and 5th 214

column, respectively, of L
�

 in Fig. 3. Significant model misrepresentations of the remote impacts 215

on the ENSO region ( L
�

5 j ) are evident, consistent with the suggestion from previous studies that216

simulation errors outside the Pacific basin also contribute substantially to errors in ENSO 217

simulations [e.g. Guilyardi et al. 2009]. For instance, the damping impact of Indian Ocean SSTs 218

on ENSO suggested in many studies [e.g. Annamalai et al. 2005; Kug and Kang 2006; Kug et al. 219

2006; Dommenget et al. 2006; Yeh et al. 2007] is clear in both our observational and model 220
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based L
�

5 j  estimates; however, the exact locations of the influential regions are different. 221

Whereas the models are in unanimous agreement that the damping influence is exerted from the 222

entire Indian Ocean basin, the observations are equally unanimous in suggesting that it is exerted 223

only from the eastern half of the basin. Indeed, the observations suggest a positive feedback on 224

ENSO by SSTs in the western Indian Ocean ( L
�

51 L
�

15 > 0 ), in sharp contrast to the negative 225

feedback in the models. The models also misrepresent the influence of the Atlantic SSTs on the 226

ENSO region. The observations suggest a very weak influence, whereas the models suggest a 227

substantial influence, but with little inter-model agreement even with regard to the sign of the 228

North Atlantic influence ( L
�

57 ). And finally, Figure 3 provides evidence that the influence of the 229

northern off-equatorial SSTs on the equatorial SSTs in Region 5 ( L
�

54 ) is systematically too 230

strong in the models compared to observations.231

232

Several aspects of the impact of SSTs in the ENSO region on other regions ( L
�

i5 ) are also not 233

well captured by the coupled models. For instance, the impacts on the eastern Indian ( L
�

25 ) and 234

southern tropical Atlantic oceans ( L
�

85 ) are clearly outside the range of the observational 235

estimates. Also, there is strong inter-model disagreement concerning even the sign of the impact 236

on the Warm Pool SSTs ( L
�

25 , L
�

35 ). With regard to the impact on SSTs in the regions to the 237

immediate north and south of the ENSO region, the models suggest a large positive impact on 238

both regions ( L
�

45 > 0 and L
�

65  > 0), whereas the observations suggest a large impact only on the 239

southern region ( L
�

65  > 0).240

241
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Besides interactions with the ENSO region, Fig. 3 suggests significant model misrepresentations 242

of the Indian ocean influences on the southern Atlantic basin  ( L
�

81  and L
�

82 ); the western Pacific 243

influences on the Eastern Indian ( L
�

23 ), northeastern Pacific ( L
�

43 ), southeastern Pacific ( L
�

63 ) and 244

southern Atlantic ( L
�

83 ) basins; the northeastern Pacific influence on the western Pacific ( L
�

34 )245

basin; and the northern Atlantic influence on the western Indian ( L
�

17 ) and northeastern and 246

southeastern Pacific ( L
�

47  and L
�

67 ) basins. In many instances these influences are inconsistent 247

even with regard to sign among the models.248

249

4. Summary and discussion250

In this study we investigated the interactions among 8 broadly defined regions of coherent 251

tropical SST variability in the Pacific, Indian, and Atlantic Ocean basins using 3 observational 252

and 76 climate model simulation datasets of the 20
th

 century. The 8-dimensional SST feedback 253

matrix was estimated separately using each dataset by constructing a Linear Inverse Model based 254

on the lag-covariance statistics of the 100-yr monthly SST time series. In general, we found the 255

local feedbacks on SST in our 8 selected regions to be reasonably consistent among the 256

observations and the coupled models, although relatively less so in the eastern equatorial ENSO 257

region (Region 5). It was in the representation of the remote feedbacks that we found the models 258

differing most from the observations, and also from one another. In particular, we found the 259

influence of the eastern Pacific ENSO region on other regions, and of the other regions on the 260

ENSO region, to vary considerably from model to model. We also found the representation of 261

remote interactions with the Indo-Pacific Warm Pool region to be highly variable.262

263
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Figure 3 provides a comprehensive summary of the results from our local and remote feedback 264

analysis. It depicts the realism or otherwise of coupled model representations of all possible 265

interactions among our 8 selected regions of dominant tropical SST variability. Although our 266

emphasis was on highlighting those interactions that are represented particularly poorly in the 267

models, the dominant impression from the figure is that of large inter-model inconsistencies in 268

the remote feedbacks even in instances when the multi-model ensemble-mean feedback is in 269

reasonable agreement with the observations.270

271

Given such model errors and inconsistencies in the feedback operator L , relying on any one 272

particular climate model to generate realistic responses x = �L�1
F  to external radiative forcing 273

is clearly unjustified. Focusing on the multi-model ensemble mean response x = �L�1
F  is the 274

usual suggested solution to this problem. However, we have provided evidence that even the 275

multi-model mean operator L  differs from the observed operator in several key respects. The 276

conclusion seems inescapable that at the very least, some important elements of L  highlighted in 277

this paper should agree better with observations to increase our confidence in the ability of even 278

a multi-model ensemble to generate reliable responses to external forcing. Reduction of 279

interaction errors that are systematic across all the models in Fig. 3 would appear to be an 280

obvious first step. The fact that such interactions, especially among basins separated by 281

continental land masses, generally occur on time scales of at most a few months suggests that 282

they occur primarily through the atmosphere and not through the oceans, which should help in 283

error diagnosis and reduction. 284

285
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We end by pointing to an encouraging aspect of isolating model errors at the level of the 286

feedback operator L , as done here, as opposed to merely documenting long-term simulation287

errors to demonstrate the existence of model errors. This is that the model errors in L  should be 288

manifested in errors of tropical SST forecasts made using the models at forecast ranges of as 289

short as one month, given the validity of (1) even at this short range as demonstrated in Fig. 2. 290

This suggests that an extensive model improvement program involving even very large numbers 291

of short (~ 1 month) experimental model integrations to diagnose and reduce the short-range SST 292

forecast errors and, concurrently, errors in L , might prove fruitful.293

294
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Figure Legends406

Fig. 1 (a) The dominant regional EOFs of monthy SST anomalies in the tropical Indian, Pacific, 407

and Atlantic Oceans obtained from separate EOF analyses and shown in the same map for ease 408

of presentation. The regional boundaries of the EOF analyses are indicated by thick black lines. 409

The numbers along the bottom indicate the fractions of SST variance explained by the EOFs. (b) 410

As in (a) but for the second most dominant EOFs. The SST data are from the 20
th

 century (1900-411

1999) HadISST data set [Rayner et al. 2003]. The data were interpolated to a T42 Gaussian grid 412

before performing the EOF analyses. The raw EOF patterns obtained were then spatially 413

smoothed using a T21 spectral filter to emphasize the larger scale features. (c) Our 8 selected 414

tropical regions of geographically coherent SST variability based upon the EOF analyses. Region 415

1: WTI (Western Tropical Indian), Region 2: ETI (Eastern Tropical Indian), Region 3: WTP 416

(Western Tropical Pacific), Region 4: NSP (North Subtropical Pacific), Region 5: ENSO, Region 417

6: SSP (South Subtropical Pacific), Region 7: NTA (North Tropical Atlantic), and Region 8: 418

STA (South Tropical Atlantic).419

420

Fig. 2 The dependence of the magnitude L�  of the effective SST feedback matrix L  times a 421

“representative” constant vector � , on the training lag �
0
 used for estimating L . Results are 422

shown for L  estimated using 3 observational (thick black curves) and 76-coupled simulation 423

(thin gray curves) datasets. Note that although the model results differ substantially from the 424

tightly clustered observational results, the curves for both observations and models are 425

approximately flat for �
0
 between 1 and 5 months (demarcated by light gray shading).426

427
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Fig. 3 Intercomparisons of the elements of the standardized 8 x 8 effective linear dynamical 428

feedback matrix L
�

 (units: month
-1

) estimated using 3 observational and 76 climate model 429

simulation datasets. For each matrix element (i,j), the gray bars show L
�

ij  estimated using the 76 430

individual simulations. The multi-model ensemble mean L
�

ij  is indicated by the blue dot below 431

the horizontal axis, along with the multi-model ensemble spread of L
�

ij  among all 76 simulations 432

( ±�
ALL

; large outer blue bars), and the average of the internal ensemble spread of L
�

ij  obtained 433

in 14 subsets of the ensemble simulations, each containing least 3 ensemble members, generated 434

using distinct models ( ±�
INT

; smaller inner blue bars). The mean value and range of L
�

ij435

estimated using the 3 observational datasets are indicated by the position and width of the red 436

rectangles below the horizontal axis. L
�

ij is a measure of the direct influence of the standardized 437

SST anomalies in region  j on the standardized SST anomalies in region i (see Fig. 1 for 438

locations). The influences on the equatorial eastern Pacific “ENSO” Region 5 from the other 439

regions ( L
�

5 j ), and the influences of the ENSO region on the other regions ( L
�

i5 ), are highlighted 440

by the green colored 5
th

 row and yellow colored 5
th

 column, respectively, of L
�

. See text for 441

further details.442

443
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443

Fig. 1 (a) The dominant regional EOFs of monthy SST anomalies in the tropical Indian, Pacific, and 444
Atlantic Oceans obtained from separate EOF analyses and shown in the same map for ease of 445
presentation. The regional boundaries of the EOF analyses are indicated by thick black lines. The 446
numbers along the bottom indicate the fractions of SST variance explained by the EOFs. (b) As in (a) but 447
for the second most dominant EOFs. The SST data are from the 20

th
 century (1900-1999) HadISST data 448

set [Rayner et al. 2003]. The data were interpolated to a T42 Gaussian grid before performing the EOF 449
analyses. The raw EOF patterns obtained were then spatially smoothed using a T21 spectral filter to 450
emphasize the larger scale features. (c) Our 8 selected tropical regions of geographically coherent SST 451
variability based upon the EOF analyses. Region 1: WTI (Western Tropical Indian), Region 2: ETI 452
(Eastern Tropical Indian), Region 3: WTP (Western Tropical Pacific), Region 4: NSP (North Subtropical 453
Pacific), Region 5: ENSO, Region 6: SSP (South Subtropical Pacific), Region 7: NTA (North Tropical 454
Atlantic), and Region 8: STA (South Tropical Atlantic).455

456
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456

Fig. 2 The dependence of the magnitude L�  of the effective SST feedback matrix L  times a 457

“representative” constant vector � , on the training lag �
0

 used for estimating L . Results are shown for 458

L  estimated using 3 observational (thick black curves) and 76-coupled simulation (thin gray curves) 459
datasets. Note that although the model results differ substantially from the tightly clustered observational 460

results, the curves for both observations and models are approximately flat for �
0

 between 1 and 5 461

months (demarcated by light gray shading).462

463
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463

Fig. 3 Intercomparisons of the elements of the standardized 8 x 8 effective linear dynamical feedback 464

matrix L
�

 (units: month
-1

) estimated using 3 observational and 76 climate model simulation datasets. For 465

each matrix element (i,j), the gray bars show L
�

ij  estimated using the 76 individual simulations. The 466

multi-model ensemble mean L
�

ij  is indicated by the blue dot below the horizontal axis, along with the 467
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multi-model ensemble spread of L
�

ij  among all 76 simulations ( ±�
ALL

; large outer blue bars), and the 468

average of the internal ensemble spread of L
�

ij  obtained in 14 subsets of the ensemble simulations, each 469

containing least 3 ensemble members, generated using distinct models ( ±�
INT

; smaller inner blue bars). 470

The mean value and range of L
�

ij  estimated using the 3 observational datasets are indicated by the 471

position and width of the red rectangles below the horizontal axis. L
�

ij is a measure of the direct influence 472

of the standardized SST anomalies in region j on the standardized SST anomalies in region i (see Fig. 1 473
for locations). The influences on the equatorial eastern Pacific “ENSO” Region 5 from the other regions 474

( L
�

5 j ), and the influences of the ENSO region on the other regions ( L
�

i5 ), are highlighted by the green 475

colored 5
th

 row and yellow colored 5
th

 column, respectively, of L
�

. See text for further details.476


